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a b s t r a c t

An improved p-multigrid algorithm for discontinuous Galerkin (DG) discretizations of con-
vection–diffusion problems is presented. The general p-multigrid algorithm for DG discret-
izations involves a restriction from the p ¼ 1 to p ¼ 0 discontinuous polynomial solution
spaces. This restriction is problematic and has limited the efficiency of the p-multigrid
method. For purely diffusive problems, Helenbrook and Atkins have demonstrated rapid
convergence using a method that restricts from a discontinuous to continuous polynomial
solution space at p ¼ 1. It is shown that this method is not directly applicable to the con-
vection–diffusion (CD) equation because it results in a central-difference discretization for
the convective term. To remedy this, ideas from the streamwise upwind Petrov–Galerkin
(SUPG) formulation are used to devise a transition from the discontinuous to continuous
space at p ¼ 1 that yields an upwind discretization. The results show that the new method
converges rapidly for all Peclet numbers.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The p-multigrid (synonymously spectral multigrid [1], hierarchic multigrid [2], or multi-level method [3]) algorithm orig-
inally proposed by Rönquist and Patera [1] is an iterative technique to solve hp-finite element discretizations of equations.
After a dormant period of more than a decade, the method has received renewed interest in recent works by Helenbrook
et al. [4], Helenbrook and Atkins [5,6], Fidkowski et al. [7], Oliver [8] and Luo et al. [9]. The p-multigrid method consists
of a ‘multigrid-like’ algorithm with levels coarsened by reducing the order of the approximating polynomial, p. For example,
to solve equations derived using polynomials of order 4, relaxations could be performed on solution approximations of order
4, 2, 1 and then 0. When a low polynomial degree is reached, one can use standard techniques such as geometric multigrid,
GMRES, or direct inversion to solve the remaining smaller system of equations.

While p-multigrid is generally effective, recent work by Helenbrook and Atkins [5] has shown that for discontinuous
Galerkin (DG) formulations of diffusive problems, the performance of the algorithm degrades when coarsening from p ¼ 1
to p ¼ 0. We have also observed a similar difficulty in applications of p-multigrid to DG discretizations of the 2-D Euler equa-
tions [10]. Helenbrook and Atkins [6] discovered the underlying reason for this degradation and provided a correction that
works well for diffusive problems. In this work, we show that their correction fails when applied to problems that include
convective transport. We explain this failure and present a new method to overcome the difficulty.
. All rights reserved.
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2. The steady convection–diffusion equation

The one dimensional, steady CD equation in conservation form is:
Table 1
DG sche

Sche

Loca
Bass
d
dx
ða wþ rÞ ¼ f ðxÞ ð1Þ

r ¼ �j
dw
dx

ð2Þ
where w is the steady solution, a is the convective wave velocity (assumed constant), j is the diffusivity (assumed constant),
f is a source function and r is the diffusive flux. Because the source function, f, does not affect the convergence of a numerical
scheme, we neglect it in further analysis. We study this problem on a domain with periodic boundary conditions.

2.1. The discontinuous Galerkin formulation

To formulate the discrete problem, the domain is subdivided into N elements of uniform length, and on each element, we
use a polynomial basis to describe the solution, wh, and the diffusive flux rh. The subscript h refers to the element length.
Following the notation in Arnold et al. [11], we define the following space of functions to represent the solution:
Uh :¼ fu 2 L2ðXÞ : ujK 2 PpðKÞ 8K 2 T hg ð3Þ
where L2ðXÞ is the space of square-integrable functions on the domain X. T h is the set of segments K that span the domain.
PpðKÞ is the space of polynomial functions of degree at most p on segment K.

All the DG formulations analyzed are based on the weak form of Eqs. (1) and (2). Multiplying these equations by test func-
tions vh; sh 2 PpðKÞ, respectively, and integrating by parts gives the weak form which is used to find wh 2 Uh and rh 2 Uh
�
Z xk

xk�1

ðawh þ rhÞ
dvh

dx
dx ¼ �ðcaw þ r̂Þvh

��xk

xk�1
8vh 2 PpðKÞ ð4ÞZ xk

xk�1

rhsh �wh
dsh

dx

� �
dx ¼ �ŵshjxk

xk�1
8sh 2 PpðKÞ ð5Þ
where xk�1 and xk are the left and right boundary, respectively, of element K. caw; r̂, and ŵ are boundary flux functions. These
functions are evaluated at element boundaries using information from both sides of the element and thus provide the inter-
element coupling in a DG scheme.

The schemes for evaluating the diffusive fluxes, r̂ and ŵ, that are investigated here are listed in Table 1. The notation fol-
lows that of Arnold et al. [11]: braces {} denote the average of a quantity at an element boundary. Double brackets st denote
the jump in a quantity at an element boundary. In the LDG scheme, the constant b can take values between�1/2 and 1/2. The
constant aj is given by gh�1, where g is an Oð1Þ constant . We present results for only the LDG scheme with b ¼ 0 and a base-
line value of g ¼ 4. For the Bassi–Rebay scheme, arðsuhtÞ is defined by a ‘‘lifting operator” [11] and again has an adjustable
constant, g. The baseline value of g is 1. In the results, g is varied to understand the sensitivity to this parameter. In this case
g0 will denote the baseline value (g0 ¼ 4 for the LDG b ¼ 0 scheme, and g0 ¼ 1 for the Bassi–Rebay scheme).

The convective flux, caw, is evaluated using an upwind scheme as
caw ¼ afwhg �
jaj
2

swht ð6Þ
3. The block Jacobi relaxation scheme

Before describing the relaxation scheme, we introduce some matrix notation for the discrete equations obtained from the
DG formulation. The vector of solution coefficients for element j is given by wj . The solution on this element is represented as
/T wj where / is the vector of polynomial basis functions spanning PpðKÞ. The vector of coefficients and basis functions for an
element is of length pþ 1.

The block Jacobi iterative scheme can be written in the form
RDwþ ðAw� SÞ ¼ 0 ð7Þ
mes analyzed and their numerical fluxes.

me ŵ r̂

l DG (LDG) [12] fwhg � b � swht frhg þ bsrht� ajswht

i et al. [13] fwhg frhwhg � arðswhtÞ
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where R is a relaxation matrix, w is the vector of unknown coefficients for all elements, A is the stiffness matrix. A block is
defined as the matrix of coefficients of the discrete equations for an individual element. Each block is of size ðpþ 1Þ � ðpþ 1Þ.
For the block Jacobi scheme, R is the block on the diagonal of A. We also introduce an under-relaxation parameter x. x scales
the magnitude of the diagonal blocks of the relaxation matrix by a factor of 1

x. Hence, a smaller value for x corresponds to
reducing the magnitude of the correction applied at each iteration.

4. Multigrid

p-Multigrid is used to accelerate convergence of the relaxation scheme. As in a standard multigrid algorithm, in p-mul-
tigrid, restriction and prolongation operators are needed in addition to the relaxation scheme. For p > 1, the restriction oper-
ation consists of moving solution residuals from a space of high polynomial order to a lower order. Based on the order of the
coarse space polynomial there are different p-multigrid strategies. The most frequently used algorithms employ a coarse
space polynomial order of either pc ¼ p=2 [5,6,10], pc ¼ p� 1 [14,15], or pc þ 1 ¼ ðpþ 1Þ=2 [16]. Helenbrook and Atkins
[6] have compared these algorithms for the Poisson equation and their results show that pc ¼ p� 1 offers only a small
improvement over pc ¼ p=2. Also, there is no consistent trend to indicate any advantage to using pc þ 1 ¼ ðpþ 1Þ=2 over
pc ¼ p=2. Hence either method is functional. To maintain consistency with our earlier work, we have chosen to use
pc ¼ p=2. When p ¼ 1, standard p-multigrid restriction moves the solution residuals to a discontinuous space of constants
i.e. p ¼ 0. Prolongation is the reverse operation in which the solution correction from the low-order space is transferred
to the higher-order space. For a basis /c of degree pc that is contained in the space spanned by a higher-order basis, / of
degree p, the prolongation operator on an element is given by
Il;lþ1 ¼
Z

K
//T dx

� ��1 Z
K

//T
c dx ð8Þ
The subscript l indicates the multigrid level: l ¼ 0 corresponds to the finest level. The above matrix is of dimension
ðpþ 1Þ � ðpc þ 1Þ and takes a correction represented using the basis /c and gives an equivalent representation using the basis
/. In this work, we use a nodal basis which is not hierarchical. Prolongation is essentially a correction applied to the low-
order terms while keeping the high-order terms unchanged. The restriction operator is the transpose of prolongation. This
corresponds to transferring only the residuals derived from integration with respect to the low-order terms of the approx-
imating polynomials to the coarser space. When a low value of p is reached, one is left with a system of equations which has
a small number of unknowns per element. For example, if p ¼ 0, there is one unknown per element, and the system is similar
to a cell-centered finite volume system.

The multigrid algorithm in a V-cycle can be written as a recursive subroutine as follows:
cycle(�l) {
if (l /�= coarsest level) {
Direct inversion on coarse mesh:

w½l� ¼ A�1
½l� ðS½l�Þ

return
}
Relaxation:

w½l� ¼ w½l� þ R�1
½l� ðS½l� � A½l�w½l�Þ

Restriction:

S½lþ1� ¼ IT
l;lþ1ðS½l� � A½l�w½l�Þ

w½lþ1� ¼ 0
Recursion:

cycleðlþ 1Þ
Prolongation:

w½l� ¼ w½l� þ Il;lþ1w½lþ1�

return
}

The subscript ½l� again indicates the multigrid level with l ¼ 0 corresponding to the finest level. w½0� is the solution to the

discrete CD equation. For higher values of l, w½l� is a solution correction that will be prolongated to a higher-order space. S½l�,
for l ¼ 0 is the vector of source terms in the governing equations on the finest mesh (S½0� ¼ 0 from Section 2 ), and on the
coarser meshes, i.e. for l > 0, it is the restriction of the residual from the previous level. For l ¼ 0 to l ¼ 1þ log2ðp½0�Þ the algo-
rithm is the p-multigrid algorithm where p½0� is the value of p used for the simulation. For example, for p½0� ¼ 4, level 0, 1, 2,
and 3 would have p ¼ 4;2;1, and 0, respectively. For these levels the prolongation and restriction operators are determined
using Eq. (8). At the coarsest level, the matrix equations are directly inverted. The two-level cycle iteration gives an upper
bound for the convergence rate because the second level equations are solved directly rather than iteratively. To be consis-
tent with our earlier analyses on the subject [5,6,10], the above V-cycle incorporates a single pre-smoothing step and no
post-smoothing We have verified that adding additional relaxations (smoothing) does not change the qualitative
conclusions.



B.S. Mascarenhas et al. / Journal of Computational Physics 229 (2010) 3664–3674 3667
For the p-multigrid levels of the iteration, the stiffness matrices A½l� at the coarse levels are determined using an ‘‘alge-
braic” approach. In this approach, the coarse level stiffness matrices are evaluated using the restriction and prolongation
operators
Table 2
1D dam

Sche

LDG,
Bass
LDG,
Bass
LDG,
Bass
LDG,
Bass
A½lþ1� ¼ IT
l;lþ1A½l�Il;lþ1 ð9Þ
Helenbrook and Atkins [5], have shown that this technique is more reliable and usually gives better results than the
‘‘rediscretization” approach in which the coarse matrices are formed by obtaining the DG formulation of the problem on
the coarser space.
5. Analysis techniques

For the analysis, we assume that the source function S is zero because the source term does not affect convergence. To
determine the convergence rates, we examine the eigenvalues of the multigrid iteration. For the two-level iteration we
use here, one multigrid cycle can be simplified to the following form:
w½1� ¼ I � I0;1A�1
½1� I

T
0;1A½0�

� �
I � R�1

½0� A½0�
� �

w½0� ð10Þ
where I is the identity matrix. The spectral radius of the above matrix determines the damping factor, which is the amount
that the error is decreased in each multigrid cycle. A damping factor less than one indicates that the scheme is convergent
(stable), whereas a scheme is nonconvergent if it has a damping factor greater than or equal to one. A stable scheme con-
verges more rapidly if its damping factor is closer to zero.

The continuous problem has periodic boundary conditions hence the matrices are circulant and we can use the discrete
Fourier transform to reduce the size of the matrix. We assume the solution on each element has the form:
wj ¼ ~wjeikh ð11Þ
where j is the element index, ~wj is a vector of dimension ðpþ 1Þ and h can take values of �p to p by increments of 2p=N
where N is the number of linear elements. Substitution of the form given by Eq. (11) reduces the eigenvalue problem of size
Nðpþ 1Þ to a set of N eigenvalue problems of size ðpþ 1Þ. These are then solved numerically for each value of h. h ¼ 0 is ex-
cluded from the analysis because on a periodic domain this corresponds to a mode which is determined only up to a free
constant and is undamped for any scheme. The maximum eigenvalue over the range �p < h < p is the damping factor of
the iterative scheme.
6. Review of Poisson equation results

To illustrate the failure of p-multigrid when coarsening from p ¼ 1 to p ¼ 0, we present some results similar to earlier
work by Helenbrook and Atkins [5,6] on the application of p-multigrid to the DG formulations of Poisson’s equation de-
scribed in Section 2.1. Table 2 shows the 1D damping factors obtained using block Jacobi relaxation combined with 2-level
p-multigrid. Notice that the damping factors for the p ¼ 1 to 0 case are closer to one (slower converging) than most of the
other entries in the table especially when g=g0 ¼ 4. With x ¼ 2=3, the damping factors for p ¼ 1 to 0 are essentially the same
as those in Table 2. We observed a similar difficulty with the p ¼ 1 to 0 transition in our study of p-multigrid solution meth-
ods for DG discretizations of the 2D Euler equations [10]. This apparently anomalous behavior of the p ¼ 1 to p ¼ 0 transition
is problematic because it consequently limits the convergence rate of any cycle that coarsens to p ¼ 0. Helenbrook and At-
kins [6] have shown that the reason the p ¼ 1 to 0 iteration fails is that the slowly damped modes of the p ¼ 1 relaxation are
essentially continuous functions. These functions cannot be represented well in the p ¼ 0 (coarse) space and thus the damp-
ing by multigrid is poor. For the higher-order p-multigrid transitions, such as the p ¼ 2 to 1, both spaces, fine and coarse, can
represent continuous functions well, so this difficulty does not occur.
ping factors for a 2-level block Jacobi iteration between various levels of p and with x ¼ 2=3.

me g=g0

p 1 4

b ¼ 0 1–0 0.79 0.93
i et al. 1–0 0.61 0.85
b ¼ 0 2–1 0.52 0.39

i et al. 2–1 0.66 0.39
b ¼ 0 4–2 0.67 0.46

i et al. 4–2 0.74 0.39
b ¼ 0 8–4 0.86 0.65

i et al. 8–4 0.84 0.40
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The problem with p-multigrid at p ¼ 1 can be corrected for pure diffusion by coarsening from a first order, discontinuous
polynomial (fine) space to a first order, continuous polynomial (coarse) space. In the discontinuous p ¼ 1 space, the basis
consists of the two functions
Table 3
1D dam

Sche

LDG
Bass
/ ¼
ð1� nÞ=2
ð1þ nÞ=2

� �
ð12Þ
where n is a local coordinate on the element which goes from �1 to 1 across the element. At the next level of multigrid, we
enforce continuity of these functions across element boundaries. Thus, there will be one piecewise-linear, continuous func-
tion associated with each vertex in the 1D mesh. This is exactly the basis that is typically used in continuous linear finite
element formulations. In the continuous space, the number of degrees of freedom per element is 1 so this corresponds to
halving the number of degrees of freedom in the approximation space.

If we choose the convention that, in the continuous space, the left vertex is the degree of freedom associated with each
element; the restriction operator for the transition from the p ¼ 1 discontinuous to continuous space for element K is given
by
IT
C�DK;K�1

¼ 0 1½ �
IT

C�DK;K
¼ 1 0½ �

IT
C�DK;Kþ1

¼ 0 0½ �
ð13Þ
where IT
C�DK;K�1

is the block of the discontinuous-to-continuous restriction operator that multiplies the residuals on element
K � 1 to form the residual in the continuous space on element K. Basically, all contributions to the continuous residual at a
given vertex are summed. For example, the residual restriction for element K consists of summing the contribution of the
discontinuous residual associated with the right vertex function, ð1þ nÞ=2, on element K � 1 with the corresponding com-
ponent associated with the left vertex function, ð1� nÞ=2, on element K. The prolongation operator is the transpose of this
operation. This corresponds to applying the correction found for a vertex in the continuous space to both the left and right
vertex functions in the linear discontinuous space.

Table 3 reproduces the results obtained by Helenbrook and Atkins using this transition. Comparing these results with the
p ¼ 1 results in Table 2, we see that the multigrid convergence rates have improved considerably. Hence, the transition to
continuous space at p ¼ 1 effectively solves the problem for Poisson’s equation.

7. Convection–Diffusion equation

Inspired by this success, next we apply these ideas to DG discretizations of the steady CD equation. The behavior of the
convection–diffusion equation is characterized by the magnitude of convective versus diffusive transport as characterized by
the Peclet number, Peh � ah

2j. Hence, we study cases with Peclet number ranging from 10�3 (diffusion dominated) to 103 (con-
vection dominated).

Fig. 1 shows the damping factors versus Peh for the Bassi et al. and LDG, b ¼ 0 diffusive schemes when combined with the
upwind convective scheme for a multigrid transition from a p ¼ 1 discontinuous space to a p ¼ 1 continuous space. The cir-
cular markers (�) are for the Bassi et al. scheme and the square markers (h) are for the LDG scheme. The schemes are shown
for g=g0 ¼ 1. The results with g=g0 ¼ 4 are similar. The broken horizontal line at y ¼ 1 indicates graphically the level below
which the damping factors must lie for a scheme to be stable. For the diffusion dominated cases, both schemes perform well.
However, as the magnitude of the convective transport becomes significant, the performance of the schemes degrade until
they no longer converge.

7.1. The first order wave equation

To explain this failure, we turn our attention to the first order wave equation. We first analyze results obtained by p-mul-
tigrid transition from discontinuous p ¼ 1 space to a continuous p ¼ 1 space. Table 4 compares these results with the damp-
ing factors obtained using standard p-multigrid with p ¼ 1 to 0 and p ¼ 2 to 1 discontinuous spaces. Consistent with Fig. 1,
transitioning to a continuous space at p ¼ 1 is unstable. In contrast to the diffusive problem, p-multigrid performs well when
coarsening from p ¼ 1 to p ¼ 0 for the wave equation. However, as we have indicated in the introduction, this is not true with
more complicated systems such as the Euler equations. In order to develop an iterative method which works well for all Pec-
ping factors for 2-level block Jacobi iteration, transitioning from a discontinuous p ¼ 1 space to a continuous p ¼ 1 space and with x ¼ 2=3.

me g=g0

1 4

, b ¼ 0 0.43 0.37
i et al. 0.33 0.33
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Fig. 1. Damping factors for the CD equation using a transition from p ¼ 1 discontinuous space to p ¼ 1 continuous Galerkin space, x ¼ 2=3.

Table 4
Damping factors for variants of p-multigrid with the block Jacobi relaxation on a DG discretization of the 1-D first order wave equation.

p-Multigrid scheme Damping factor

p ¼ 1 discontinuous to p ¼ 0 discontinuous 0.3333
p ¼ 1 discontinuous to p ¼ 1 continuous Unstable
p ¼ 2 discontinuous to p ¼ 1 discontinuous 0.3333
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let numbers and for systems, it is important to understand why the p = 1 discontinuous to continuous transition fails for the
wave equation.

To explain why coarsening to a continuous space at p ¼ 1 does not work, we first examine the outcome of applying the
weighted-integral DG formulation as given by Eq. (14) to a continuous space. For the wave equation, this is given by
XN

k¼1

Z xk

xk�1

awh
dvh

dx
dx� ðcawÞvh

��xk

xk�1

" #
¼ 0 8vh 2 Uh \ C0 ð14Þ
where wh is also obtained from the continuous space Uh \ C0. The sum over all elements was not necessary in DG because the
constraints could be applied element by element. We have summed the constraints to make the following point. Because wh

and vh are continuous, the inter-element boundary terms in the sum cancel out leaving
XN

k¼1

Z xk

xk�1

awh
dvh

dx
dx� ðcawÞvh

��xN

x0
¼ 0 8vh 2 Uh \ C0 ð15Þ
This is exactly the continuous Galerkin formulation of convection. For first order polynomial approximations, the Galerkin
formulation reduces to a central-difference approximation to the differential equation. Hence the discrete problem is no
longer upwinded in the coarse continuous space thus causing the method to fail.

In our case, the coarse grid equations are not obtained by a weighted-integral method, but rather by using the restriction
and prolongation operators. However, due to the summation involved, this also results in a central-difference formulation.
To see this, Eq. (16) shows the p ¼ 1 discontinuous formulation which is upwinded for a > 0. kr is entirely 0 which indicates
that there is no coupling to the downwind element.
KDG ¼

. .
. . .

. . .
.

kl k kr

. .
. . .

. . .
.

26664
37775

2N�2N

ð16Þ
where
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kl ¼
0 �1
0 0

� �
; k ¼

0:5 0:5
�0:5 0:5

� �
; kr ¼

0 0
0 0

� �

We next apply the restriction and prolongation operators to form the coarse grid stiffness matrix as shown in Eq. (17).
Kcoarse ¼ IT � KDG � I ¼
. .

. . .
. . .

.

�0:5 0 0:5
. .

. . .
. . .

.

26664
37775

N�N

ð17Þ
where the restriction operator shown below restricts from the discontinuous to continuous space as discussed earlier.
IT ¼
. . . 0 1 1 0 . . .

. . . 0 1 1 0 . . .

� �
N�2N
Eq. (17) shows that the coarse grid equations obtained by using the restriction and prolongation operators is also a cen-
tral-difference scheme. It is well-known that the central-difference equations are singular or very close to singular [17–19].
Thus, the p-multigrid iteration is unstable.

7.2. The streamwise upwind Petrov–Galerkin formulation

To avoid the problems associated with central-difference discretizations, we apply ideas from the streamwise upwind
Petrov–Galerkin (SUPG) formulation [18] which gives an upwind discretization when the solution space is continuous.
For the homogeneous 1D wave equation, the weak form of the SUPG formulation is given by
XN

k¼1

Z xk

xk�1

vh þ asdvh

dx

� �
a

dwh

dx
dx ¼ 0 8vh 2 Uh \ C0 ð18Þ
Here, the trial function wh is also chosen from the continuous space Uh \ C0. Note that the weighting function is vh þ as dvh
dx as

opposed to just vh as in a standard Galerkin formulation. The parameter s is defined as h
2�jaj. The term as dvh

dx is responsible for
providing the upwinding and is shown for a > 0 along with the standard Galerkin weighting function vh in Fig. 2(a). The sum
of those two functions is the SUPG weighting function and is shown in Fig. 2(b).

To improve the performance of p-multigrid, we direct our efforts towards developing a method to transition from a p ¼ 1
DG discrete problem to a continuous SUPG discretization keeping p equal to 1. The restriction operator can be defined by
finding the linear combination of fine grid weighting functions that form the coarse grid weighting functions. Based on
Fig. 2(b), we can select the weights by which the fine space residuals are to be multiplied and then added together to give
a coarse system that is equivalent to multiplying by the SUPG weight function and integrating. The restriction operator con-
structed to do this is shown in Eq. (19).
0 1 2
−1

−0.5

0

0.5

1.0

1.5

(a)  Galerkin test function, p=1

0 1 2
−1

−0.5

0

0.5

1

1.5

2
(b)  SUPG test function, p=1

SUPG component

Element N +1Element N

Element N Element N +1

Standard Galerkin 

(a) Standard Galerkin piecewise-linear weighting function vh and SUPG component obtained from asðdvh=dxÞ. (b) Linear SUPG weighting function
d by summing Galerkin and SUPG component vh þ as dvh

dx

� �
.
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IT
SUPG ¼

. . . 0 ½� � � V � � � � 0 . . .

. . . 0 ½� � � V � � � � 0 . . .

� �
N�2N

ð19Þ
where � � � V � � �½ � ¼ 0:5 1:5 0:5 �0:5½ �
Prolongation operators can be defined in a similar way to restriction operators except using the trial functions, not the

weighting functions. Because the trial functions in SUPG are the same as in a standard Galerkin formulation, we use the same
prolongation operator I, defined in Eq. (17) which was used to prolongate from the p ¼ 1 continuous space to the p ¼ 1 dis-
continuous space.

Using the new SUPG restriction and our previous prolongation operator, we can form the coarse grid matrices as was done
previously. From Eq. (20) we see that by using this modified restriction operator, the resulting coarse space stiffness matrix
gives a first order upwind discretization.
Kupwind ¼ IT
SUPG � KDG � I ¼

. .
. . .

. . .
.

�1 1 0
. .

. . .
. . .

.

26664
37775

N�N

ð20Þ
7.3. DG to SUPG results for the first order wave equation

There are two ways to incorporate the above modifications into the p-multigrid algorithm. In both implementations, up-
wind coarse grid equations are used. The coarse space equations can be obtained either algebraically using the upwind
restriction operator and original prolongation operator as shown above or by SUPG rediscretization. Both methods give
the same results which is a first order upwind discretization. Both methods also use the same prolongation operator. The
difference between the two implementations is whether we use the SUPG restriction operator or the standard restriction
operator to transfer the residuals to the coarse grid. If we use the standard restriction operator, this corresponds to a redis-
cretization approach using an upwind discretization. Upwind transfer operators have been used for geometric multi-
grid[20,21], however, as far as we are aware the method has not been attempted with p-multigrid.

The results of numerical experiments on the model problem using both implementations are shown in Table 5 for both
implementations, along with the p ¼ 1 to 0 p-multigrid result. If we use the SUPG residual restriction, the iteration converges
rapidly at nearly the same rate as the p ¼ 1 to 0 p-multigrid result. The use of standard restriction and prolongation to trans-
fer residuals, but with an upwind discretization on the coarse grid, does not give good results. This indicates that not only
does one need stable coarse grid operators, but also that these operators must be compatible with the restriction and pro-
longation methods. Because the damping factor obtained with the standard restriction is poor, we do not include this imple-
mentation in any of the following analyses.

7.4. DG to SUPG for the convection–diffusion equation

We now have effective methods for the diffusion equation and the wave equation. These two methods must be combined
for application to the convection–diffusion equation. For this we again follow ideas from the SUPG formulation for the CD
equation obtained by Brooks and Hughes [18]:
XN

k¼1

Z xk

xk�1

vh þ asdvh

dx

� �
a

dwh

dx
� d2wh

dx2

 !
dx ¼ 0 8vh 2 Uh \ C0 ð21Þ
where
s ¼ Dx
2jaj cothðPehÞ �

1
Peh

� �

The term in brackets in the above definition of s approaches 0 when Peh approaches 0 and approaches 1 when Peh approaches
infinity. Thus, this allows us to transition from the diffusion formulation to the convection formulation depending on Peh.

Using the above definition of s and the procedure used for the wave equation (Section 7.2), we obtain the restriction oper-
ator shown below.
for the 1-D first order wave equation.

ementation Damping factor

restriction 0.3800
dard restriction 0.9578
ltigrid, p ¼ 1 to p ¼ 0 0.3333
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Fig. 3. Damping factors for the CD equation using a transition from p ¼ 1 DG to p ¼ 1 SUPG (circles) and DG p ¼ 1 to 0 (squares). Open markers correspond
to the Bassi et al. scheme and closed markers correspond to the LDG schemes. Dashed lines correspond to g=g0 equal to one and solid lines to g=g0 equal to
four. x ¼ 2=3 in every case.
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IT
SUPG ¼

. . . 0 ½� � � V � � � � 0 . . .

. . . 0 ½� � � V � � � � 0 . . .

� �
N�2N

ð22Þ
where � � � V � � �½ � ¼ s 1þ s 1� s �s½ �
As in Section 7.2, because the trial functions are constrained to be piecewise continuous, we again use the prolongation

operator defined in Eq. (8).

7.5. DG to SUPG results for the convection–diffusion equation

Fig. 3 is a plot of the damping factors versus Peh for the Bassi et al. and LDG schemes using the DG to SUPG multigrid
transition shown with the circle markers (�,�). For comparison, we also plot with square markers (h, j) the damping factors
for the schemes using a DG p ¼ 1 to 0 transition. The data with the open markers (�, h) and closed markers (�, j) correspond to
the Bassi et al. scheme and the LDG schemes, respectively. All results are given for g=g0 equal to one (dashed lines) and four
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Fig. 4. Variation in damping factors for the LDG, b ¼ 0 scheme with g=go ¼ 4 and using inexact values of s.
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(solid lines). The broken horizontal line at y ¼ 1 indicates graphically the level below which the damping factors must lie for
a scheme to be stable. We see that with the DG to SUPG multigrid transition, all schemes converge rapidly over the entire
range of Peh. Also, as Peh increases (more convective processes), the damping factors approach 0:3800; the damping factor for
the case of pure convection (Table 5). Similarly, for smaller values of Peh (more diffusive processes), the damping factors ap-
proach that for the case of pure diffusion (Table 3). This implies that the new method of restriction is correctly transitioning
from DG to continuous upwind discretization or standard Galerkin as warranted by the problem. The schemes with DG to
SUPG multigrid transition show a significant improvement over those with DG p ¼ 1 to 0 transition for Peh 6 10. For
Peh P 10, the DG to SUPG and DG p ¼ 1 to 0 multigrid schemes perform comparably.

We also study the sensitivity of the DG to SUPG multigrid method to the upwind parameter s. This is important because
in multiple dimensions and on unstructured or stretched meshes, the fluid velocity and element length are not constant in
different directions. Hence the exact value of s may be difficult to define. Fig. 4 plots the damping factors versus Peh for the
LDG, b ¼ 0 scheme with g=go ¼ 4. The three curves represent the damping factors for the scheme using upwind parameter
sexact;

1
2 sexact and 2:0sexact , where sexact � s as defined in Eq. (21). For Peh 	 1 or Peh 
 1, the results are fairly insensitive to

the precise value of s. For Peh of Oð1Þ, there is a greater sensitivity to value of s chosen. For the case with s ¼ 1
2 sexact , we actu-

ally see improved performance for most conditions. These characteristics are common to all schemes we have investigated.
8. Conclusions

We have shown that a p-multigrid algorithm that restricts to a p ¼ 1 continuous space, although effective for DG discret-
izations of diffusive problems, fails when applied to the convection–diffusion equation. The reason for the failure is that for
the wave equation, the transition to a first order continuous space results in central-difference equations in the coarser
space. This difficulty cannot be eliminated by simply rediscretizing using an upwind operator in the coarse space; The damp-
ing factors obtained by using standard operators to restrict to the continuous space and then using an upwind discretization
on the coarse space were poor.

The above difficulty has been resolved using ideas from the SUPG formulation [18] to modify the restriction operator.
When the modified restriction operator is applied to the wave equation an upwind discretization is obtained on the contin-
uous space. The modified method essentially uses an upwind weighted restriction operator, which to our knowledge, has
never been applied before in a p-multigrid context. This new approach proved to be an effective p-multigrid strategy for
the wave equation and was then generalized to the convection–diffusion equation using the SUPG upwind parameter, s.
The generalized approach was effective for all values of the grid Peclet number, Peh.
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